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We study the effect of a random Flory-Huggins parameter in a symmetric diblock copolymer melt which is
expected to occur in a copolymer where one block is near its structural glass transition. In the clean limit the
microphase segregation between the two blocks causes a weak, fluctuation induced first order transition to a
lamellar state. Using a renormalization group approach combined with the replica trick to treat the quenched
disorder, we show that beyond a critical disorder strength, which depends on the length of the polymer chain,
the character of the transition is changed. The system becomes dominated by strong randomness and a glassy
rather than an ordered lamellar state occurs. A renormalization of the effective disorder distribution leads to
nonlocal disorder correlations that reflect strong compositional fluctuation on the scale of the radius of gyration
of the polymer chains. The reason for this behavior is shown to be the chain length dependent role of critical
fluctuations, which are less important for shorter chains and become increasingly more relevant as the polymer
length increases and the clean first order transition becomes weaker.
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I. INTRODUCTION

Copolymer systems, i.e., macromolecules built of se-
quences of chemically distinct repeat units, are of particular
interest due to the phenomenon of microphase separation and
the resulting formation of complex ordered structures chang-
ing their macroscopic, mechanical properties �1–7�. For ex-
ample, a diblock copolymer melt consisting of blocks of A
and B monomers is chiefly characterized by the Flory-
Huggins parameter

� = �AB −
1

2
��AA + �BB� �1�

which characterizes the segregation strength between A and
B monomers. Here, �ss� is a measure for the short distance
repulsion between s and s� monomers �s ,s�=A or B� in units
of kBT. For large enough � phase separation into A-rich and
B-rich regions occurs �2�. These regions are limited in size
due to the covalent bond between the blocks resulting in
microphase separation. In case of equal length of the A and B
blocks the transition between the disordered, i.e., mixed
phase, and a microphase separated state is via a fluctuation
induced first order transition �4�, originally proposed by Bra-
zovskii �8,9�. At low temperature the system develops lamel-
lar order with a period determined by the radius of gyration
of the polymer. The observation of this transition in
poly�ethylene-propylene�-poly�ethylethylene� diblock co-
polymers of approximately equal block volume is probably
the most convincing experimental verification of the Bra-
zovskii scenario of weak crystallization �10�.

The role of disorder in copolymers has been the subject of
a number of theoretical studies. In many cases the disorder is
caused by fluctuations in the sequence length of the blocks
�11–15�. It was shown that fluctuation effects beyond mean
field theory are crucial to stabilize microphase separation for
disordered sequences �16–18�. In the limit where the typical
segment length is small compared to the total length of the

polymer, recent numerical simulations found strong devia-
tions from theories based upon an effective Ginzburg-Landau
theory, while the latter is applicable if the block length, even
though random, remains large with high probability �19�. Us-
ing a replica theory to analyze the quenched random seg-
ments, only replica symmetric solutions were found, indicat-
ing that disorder does not result in subtle aging and
nonergodicity behavior as found for example in spin glasses.
A much stronger impact of quenched randomness is caused
by “random field” disorder. This can be realized in case of a
copolymer melt in a gel matrix �20� with preferential adsorp-
tion of one of the monomers on the gel and was studied by
Stepanow et al. �21� who found a glassy state for intermedi-
ate values of � while a lamellar state only occurs for larger �.

The dramatic impact of random field disorder becomes
also evident from the results of Refs. �22–24� where it was
shown for a model in the same universality class that infini-
tesimal random field disorder leads to a state with one-step
replica symmetry breaking, i.e., a self-generated glass with
nonergodic aging behavior. This result has been confirmed in
dynamical, mode coupling calculations by Grousson et al.
�Ref. �25�� where, in a similar spirit to the early work of
Kirkpatrick and Thirumalai �26�, it has been shown that this
model, if supercooled below the first order transition to a
lamellar state, becomes dynamically arrested within a mean
field description of the dynamics. A detailed analysis of the
theory put forward in Refs. �22–24� in the context of diblock
copolymers was recently performed by Zhang and Wang
�28�. They demonstrated that self-generated glassiness oc-
curs if the equilibrium order-disorder transition is avoided,
via supercooling. In the present paper we focus on the effects
of quenched disorder alone, assuming that these further com-
plications of the clean model can be avoided if the system is
cooled down slowly enough to enter the equilibrium phase.
Recent Monte Carlo and Langevin simulations performed by
Geissler and Reichman �27� support this assumption, at least
for weak coupling, showing that in a clean system it is in-
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deed possible to nucleate the ordered, lamellar phase, in
rather large spatial regions.

An interesting realization of quenched disorder, interme-
diate between random sequences and random field disorder
of a gel matrix, occurs in case of fluctuating interaction
strength between the monomers, i.e., �ss�→�ss��x� which
leads to a random, spatially varying Flory-Huggins param-
eter

� → ��x� = �̄ + ���x� . �2�

In Ref. �29� it was argued that this is the case in a copolymer
where one block is near its structural glass transition. The
decreased mobility of the monomers of this block implies a
partial annealing and leads to slow nonthermal compositional
fluctuations which can be described by Eq. �2�. Systems
where one of the two blocks is close to a glass transition
were studied for example in Refs. �30,31�. Using a varia-
tional approach an ordered and a glasslike state with strong
compositional fluctuations were identified, depending on the
strength of the fluctuations �29�.

In this paper we analyze symmetric block copolymers
with random Flory-Huggins parameter, Eq. �2�, using a
renormalization group approach. In agreement with Ref. �29�
we find that a critical strength of the fluctuations ���x� is
needed to destroy the fluctuation induced first order Bra-
zovskii transition to a lamellar state. In addition, in the
glassy state we find, at low energies, a strong renormaliza-
tion of the distribution function P(���x�), characterized by
nonlocal fluctuations and determine a phase diagram for
variable polymer length N, mean Flory-Huggins parameter
�̄, and fluctuation strength g of ���x�. We demonstrate that
for sufficiently large chains a glassy behavior becomes inevi-
table, caused by the very different chain length dependence
of thermal and disorder related fluctuations. The renormal-
ization group technique used in this paper is a generalization
of the approach of Hohenberg and Swift �32� to the case of
systems with quenched randomness.

Our results demonstrate how disorder affects a first order
transition and are thus of relevance beyond the specifics of
random copolymer systems. The fluctuation induced first or-
der transition studied in this paper is weak. An excess en-
tropy is generated by a large phase space of fluctuations,
rendering the system unable to reach a critical point while
stabilizing an ordered structure at a finite but rather large
correlation length �8,33�. In the opposite case of a strong first
order transitions the influence of quenched disorder of the
type discussed here was studied in Ref. �34�. In this and
subsequent studies �35,36� it was shown that for d=2 disor-
der leads to a vanishing latent heat, a result obtained via
mapping the two coexisting phases with sharp interfaces
onto a random field Ising model. For d�2 the first order
transition survives below a certain disorder strength. The ex-
tension of the above mapping to d�2 �37,38� demonstrates
that the behavior for larger disorder is again in the same
universality class as the random field Ising model. The situ-
ation is different in the present model. Due to the large in-
terface width between distinct ordered regions at the weak
first order transition, the mapping onto the random field Ising
model cannot be justified anymore. Even though it is not

possible for us to specify the precise nature of the corre-
sponding transition in our case, our results strongly suggest
that the transition between a regime with effectively weak
disorder to a disorder dominated behavior is not of the ran-
dom field Ising type. On the other hand, the fact that the
resulting first order transition is weak allows us to obtain a
qualitative understanding of our results using a modified
Harris criterion �39�, typically used to analyze the role of
quenched disorder at continuous phase transitions.

The remainder of the paper is organized as follows. In the
next section we introduce the model and summarize the main
steps of the replica trick to perform the disorder average. We
introduce the renormalization group approach in Sec. III,
where we also summarize the main results of this calcula-
tion, while the details of the derivation and solution of the
flow equations are given in Appendixes. The results of our
calculation and a generalized Harris criterion are given in
Sec. IV and we briefly summarize our findings and their
implications in Sec. V.

II. MODEL AND REPLICA TRICK

We consider Np polymer chains �n=1,… ,Np�, each con-
sisting of N statistical segments �s=1,… ,N�. The A block on
each molecule contains Nf statistical segments and the B
block has N�1− f� segments. We restrict the discussion to the
case f =1/2. The relevant degrees of freedom of the polymer
are the positions of the segments Rn,s. The system is charac-
terized by a Gaussian statistical weight and additional ex-
cluded volume pseudopotential:

H =
d

2�
n,s

�Rn,s+1 − Rn,s

a
�2

+
1

2�0
�

s,s�;n,n�

�s,s��Rn,s�

���Rn,s − Rn�,s�� , �3�

where a is the characteristic persistence length of the poly-
mer and �0=NNp /V is the monomer density. In the spirit of
Flory-Huggins lattice theory the monomer density for a
dense polymer melt is roughly given by �0�a−3. �s,s� is
dimensionless and characterizes the excluded volume inter-
action. We consider a symmetric block copolymer with

�s,s� = 	�AA, s,s� � N/2,

�BB, N/2 � s,s�,

�AB, s � N/2 � s� or s� � N/2 � s



which are assumed to vary in space. The mean repulsion
between different blocks, �̄AB, is taken to be larger than �̄AA
and �̄BB such that for the mean Flory-Huggins parameter
�̄�0 holds, i.e., A and B monomers segregate on the aver-
age. Following the procedure first outlined by Leibler �2�
�for a recent review see Ref. �6��, one introduces monomer
number density fields �A�r�=�n,s�N/2

A ��r−Rn,s� and �B�r�
=�n,s�N/2

B ��r−Rn,s�. Using the incompressibility assumption
of a dense melt,

�A�r� + �B�r� = �0,

one obtains a theory for a collective field 	�r� that describes
the microscopic fluctuations of A and B monomers:
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	�r� =
c
�a

��A�r�
�0

−
1

2
� = −

c
�a

��B�r�
�0

−
1

2
� ,

with c=1.1019 �2�. The effective action of the problem is the
Brazovskii model �8� for a scalar order parameter 	 but with
random mass term:

S�	� =
1

2
� d3x��
0 − t�x��	2 +

���2 + q0
2�	�2

4q0
2 �

+
�0

4
� d3x 	4. �4�

Following Refs. �4,10�, 
0 ,�0, and q0 can be expressed in
terms of the parameters of the polymer Hamiltonian Eq. �3�:


0 =
2

c2a2 ��s − �̄� , �5�

q0 =
1.945

Rg
, �6�

�0 =
156.56

c4aN
�7�

with �s=10.49/N. Rg=a�N /6 is the radius of gyration of a
Gaussian chain. A natural dimensionless bare constant of the
problem is �0 /q0=�495/N, putting the system in the weak
coupling regime for N�104, similar to the conclusion ob-
tained within in the self-consistent Hartree approach
�4,8,10�.

For the probability distribution of t�x��2/c2a2����x� we
assume a Gaussian form

P�t�  exp − �1

4
� ddx ddx�t�x��−1�x − x��t�x��� , �8�

with t�x�t�x��=2��x−x��. In what follows we will assume
uncorrelated disorder with correlation function

��x − x�� = �0��x − x�� .

�0 can be expressed in terms of the mean square fluctuations
of the Flory-Huggins parameter ���2 as

�0 =
23.14

a�N

��2

�s
2 . �9�

Here, ��2�1/V0��V0
ddx ���x����0� characterizes the spa-

tial fluctuations of the Flory-Huggins parameter within the
volume of a single chain V0��4� /3�Rg

3. The corresponding
dimensionless strength of the disorder is �0 /q0
=4.85��2 /�s

2 and, for fixed ��2 /�s
2, does not decrease with

N. The important ratio

�0/�0 = 0.218
��2

�s
2 N1/2 �10�

therefore grows for larger chain length N. The relative
strength of the disorder becomes larger for longer chains.

We determine the averaged free energy via the replica
trick

F̄ = − T lnZ = − T lim
m→0

1

m
�Zm − 1�

and obtain

Zm =� Dt P�t� � Dm	 exp�− ��
a=1

m

S�	a��
=� Dm	 exp�− �S�m��	�� ,

with replicated Hamiltonian

S�m��	� = �
a=1

m

H�	�� −
�0

4 �
a,b
� ddx 	a

2�x�	b
2�x� . �11�

In the remainder of this paper we will analyze this replicated
action using a renormalization group approach.

III. RENORMALIZATION GROUP APPROACH

The crucial difference between the Brazovskii model Eq.
�4�, and an ordinary 	4 model of Ising-type ferromagnets is
the nonlocal term ���2+q0

2�	�2, which strongly prefers mo-
menta q with �q�=q0 as opposed to the state q=0. It is this
enhancement in the phase space of low energy fluctuations
that causes the mentioned fluctuation induced first order tran-
sition �8�. In case of ordinary n-vector 	4 theories with
quenched disorder a renormalization group approach was de-
veloped in Refs. �40–43�. However, the dramatic change in
the low energy phase space of the Brazovskii model requires
a different formulation.

The low energy modes of the problem are momentum
states on a sphere with radius q0 and one must adapt the
usual decimation of high energy states in the momentum
shell renormalization group accordingly. Instead of the
conventional shell integration �44�, where momenta with
�e−l� �q��� are eliminated, one has to eliminate states in a
shell with distance � from the sphere with radius q0. This
procedure requires ��q0. This decimation approach is
sketched in Fig. 1 and was used in Ref. �32� to study the
clean Brazovskii model. Here we generalize the approach to
the replicated model Eq. �11�, allowing us to study the role of
quenched disorder. There is a close similarity of this ap-
proach to the renormalization group developed for many
body fermion systems, where the low energy modes are also
located on a sphere of finite momentum, the Fermi surface
�45–49�. The distinct arrangements of the scattering mo-
menta lead in the case of fermions to BCS, forward, and
exchange scattering. This similarity supports the idea that the
Brazovskii model will be characterized not only by one four-
point vertex, but by an effective interaction with generic
angle between incoming and scattered momenta and an in-
teraction where all interactions are parallel.

The most general form of the quartic interaction in Eq.
�11� is expressed in terms of two vertex functions � and �:
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Sint
�m��	� =

1

4�
a
�

qi

�q1,q2,q3,q4
	a,q1

	a,q2
	a,q3

	a,q4

+
1

4�
a,b
�

qi

�q1,q2,q3,q4
	a,q1

	a,q2
	b,q3

	b,q4

with shorthand �qi
¯ =��ddq1¯ddq4 / �2��4d�¯. The initial

value of the inter-replica coupling is given as

�q1,q2,q3,q4
= − �0��q1 + q2 + q3 + q4� .

The vertex �q1,q2,q3,q4
has been determined by Leibler �2�.

Considering �qi�=q0�, it only depends on two independent
angles �12, between vectors q1 and q2, and �14 between vec-
tors q1 and q4, respectively. In the notation of Ref. �2�, we
can write �q1,q2,q3,q4

�4�h1 ,h2�, where h1=2+2 cos��12�
and h2=2+2 cos��14�. The most relevant vertices are those
where all momenta lie in the same plane. This only happens
if either h1=0 or h2=0 �equivalent to �12�4�=� and �14�2�
generic� or h1+h2=4 �equivalent to �12=�14±��. We find
that

�4„cos���… =
1

N
�

l

alPl„cos���… , �12�

where Pi are Legendre polynomials and the coefficients of
the first three angular momentum channel are a0=176.92,
a1=14.34, a2=2.30, and a3=8.33. The angle � stands for �
=�12 or �14. In the course of the renormalization, these ver-
tices may change differently depending on the specific mo-
mentum dependence. The vertex �, which does not couple
distinct replicas, leads at low energies to the two coupling
constants

�̄0 = �p,−p,q,−q,

�0� = �p,−p,p,−p,

where �̄0 refers to a generic angle between the momenta p
and q ��12=� and generic �14� with �p�= �q�=q0, while �0�

determines the renormalized interaction of the special case

p=q��12=�14=��. As first shown in Ref. �8�, �̄0 and �0�

renormalize differently. Using Eq. �12� one can determine
the initial values of these two coupling constants:

�0� =
106.20

Na0c4 , �13�

�̄0 =
120.00

Na0c4 . �14�

The fact that we restrict ourselves to these two coupling con-
stants is consistent with the fact that the equilibrium structure
of the clean system is lamellar. More complex ordered states
are possible if the system is quenched rapidly below the
order-disorder transition �22–24�, effects that will be ignored
in this paper, i.e., we assume that the system is cooled slowly
enough to avoid self-generated randomness and vitrification.

The analysis of the allowed coupling constants becomes
more subtle in case of the vertex � which couples distinct
replicas. The symmetry of this interaction allows for alto-
gether four distinct vertices:

�̄ = �p,−p,q,−q,

�� = �p,−p,p,−p,

�̄ = �p,q,−p,−q,

�� = �p,p,−p,−p. �15�

The coupling constants �̄ and �̄ refer to generic angles
between the two scattered momenta, whereas they are paral-

lel in the cases of �� and ��, respectively. While �̄ and ��

characterize the interactions of the system, the coupling con-

stants �̄ ,�� ,�̄, and �� determine the evolution of the disor-

der distribution function. �̄ and �� correspond to local dis-
order, as characterized by the bare distribution function Eq.

�8�, t�x�t�x����x−x��. On the other hand, �̄ and �� stand
for nonlocal randomness generated as one considers the ef-
fective low energy properties of the system. This last aspect
becomes most evident by undoing the replica trick. Introduc-
ing

Gp,q = �p,q,−p,−q, �16�

the corresponding part of the replicated action is

S� =
1

4!�a,b
�

x,x�,y,y�
G�x + x�,y + y��	a,x	a,x�	b,y	b,y�,

with real space Fourier transform G�x ,x��
=��ddp ddq / �2��2d�exp(i�px+qx��)Gp,q. This can be consid-
ered as the result of a replica calculation where the initial
disordered Hamiltonian was

FIG. 1. �Color online� Momentum shell integration procedure.
The configurations with higher wavelength modulations are inte-
grated out, reducing the low energy degrees of freedom to configu-
rations closer to the perfect lamellar arrangement �as illustrated in
the lower panel�.
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Sdis�	� =
1

2
� ddx ddyT�x,y�	�x�	�y� . �17�

The nonlocal random function T�x ,y� has a distribution
function

P�T� � exp�−
1

4
� ddx ddx�ddy ddy�

� T�x,y�G−1�x − y,x� − y��T�x�,y��� , �18�

with correlation function G�x−y ,x�−y��= 1
2T�x ,y�T�x� ,y��.

Thus, in case �̄ or �� flows to large values, the system
acquires a nonlocal randomness with typical length scale
�x−y� , �x�−y���2� /q0. In this sense we obtain a renormal-
ization of the distribution function of the problem. The initial
distribution

G0�x − y,x� − y�� = 2�0��x − y���x� − y�� �19�

becomes broadened such that

���x − y�� → f�q0�x − y�� . �20�

and the disorder correlations become nonlocal.

A. The clean case: Brazovskii transition

Before we analyze the disordered case with altogether six
distinct coupling constants we summarize the renormaliza-
tion group approach to the clean case, �0=0. The derivation
of the corresponding flow equations was given in Ref. �32�
and we repeat the main steps in Appendix I for completeness
and in order to make the description of the replicated theory
more transparent. In addition we determine the actual phase
boundary from the flow equations and compare the result
with Brazovskii’s original calculation �50�. As shown in Ap-
pendix I, the flow equations of the clean model and after
rescaling the coupling constants and mass term according to

�̄�q0
2 /�2�0

3��̄, �� �q0
2 /�2�0

3���, and r
0 /�0
2 are

dr

dl
= 2r + 3�̄ ,

d�̄

dl
= 3�� − 3�̄2,

d��

dl
= 3�� − 6�̄2. �21�

This set of equations has a closed solution:

r�l� = e2l�r0 + 3�
0

l

dx �̄�x�e−2x� ,

�̄�l� =
�̄0e3l

1 + �̄0�e3l − 1�
,

���l� =
2�0�e3l

1 + �0��e3l − 1�
− �0�e3l, �22�

where �̄�0�= �̄0�q0
2 /�2�0

3��̄0, �0� =���0��q0
2 /�2�0

3��̄0,
and r�0�=r0=
0 /�0

2. Note that �̄�l� is always positive and
approaches a fixed value �̄�l→��→1. However, ���l�
changes sign for l= l*, where l* is given by

l* =
1

3
ln�1 +

1

�0
� . �23�

If the system establishes a modulated order

	�x� = 	0�x�exp�− iqm · x� , �24�

where �q0�=q0 and 	0�x� is a smoothly varying function on
the scale q0

−1, the driving interaction is the one where all
interacting momenta are either parallel or antiparallel, i.e.,
��. A flow toward negative �� indicates therefore a fluctuation
induced first order transition to a modulated state, just as in
Ref. �8�. Since the scaling dimension of the interaction is 3,
we have, in distinction to a recent application to a quantum
version of the Brazovskii model �51�, no controlled � expan-
sion. Thus, we have to limit our analysis to the case of small
�̄0 and �0�. The renormalization group �RG� flow will pro-
ceed until scaling stops at a scale l0 with r�l0�=1, i.e ,

0�l0�=�0

2. If l0� l* scaling stops before the interaction
changes sign. Then there is no first order transition. On the
other hand, if l0� l* the system changes character before
scaling stops and we cannot determine the bare parameters
without introducing a term of order 	6. Thus we are in the
ordered state or at least have local minima as in an over-
heated system. The transition happens for l0= l* and we are
right at the first order transition �more precisely at the spin-
odal point where metastable ordered states emerge�. From
Eqs. �22� and �23� the condition l0= l* is obeyed if

r0 = e−2l* − 3�
0

el*

dy
1

��1 − �̄0�/�̄0� + y3 . �25�

We assume for simplicity �̄0=�0� =�0. In the limit �0�1
holds el*→�0

−1/3 and we obtain to leading order in �0

r0
* = �1 −

�

�3
− ln 2��0

2/3 + O��0� � − 1.507�0
2/3. �26�

Returning to the unscaled variables and using the definition
Eq. �5� for 
0, we obtain that the stability limit �i.e., the
spinodal� of the lamellar phase is given by

��̄N�s � 10.50 +
�

N1/3 , �27�

with �=35.69. The value for � is comparable to the result
�=41, obtained in Refs. �4,10� using the self-consistent Har-
tree theory of Ref. �8�. If we further assume the initial verti-
ces according to Eq. �14�, instead of �̄0=�0�, we obtain r0

*

=−1.783�0
2/3, leading to �=42.22. The remaining small dif-

ference is likely caused by the fact that our flow equations
are only approximately valid for r�l0��1, no matter how
small the coupling constant. Still the deviation in the numeri-
cal prefactor is very small and we will continue our analysis
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for the disordered case along similar lines. In addition we
will, for the rest of the paper, assume �0= �̄0=�0�, with �0
given by Eq. �7�.

B. The disordered case: Flow equations

Since all the six coupling constants listed above are al-
lowed by symmetry, we have to start our calculation with a
model where all those terms are included. We use the same
rescaling of the coupling constants as in the clean case, i.e.,

�̄= �q0
2 /�2�0

3��̄, �̄= �q0
2 /�2�0

3��̄, etc. The initial values of

the flow are then �̄�0�=���0�= �̄�0�=���0�=−g, with

g 
q0

2

�2�0
3�0. �28�

Generalizing the steps which led to the flow equations in the
clean case to the replicated model Eq. �11� leads to the fol-
lowing flow equations up to one loop:

dr

dl
= 2r + 3�̄ + 2�̄ ,

d�̄

dl
= 3�̄ − �3�̄2 + 4� �� ,

d��

dl
= 3�� − 2�3�̄2 + 4� �� ,

d�̄

dl
= 3�̄ − �6�̄�̄ + 4�̄�̄� ,

d��

dl
= 3�� − �6�̄�̄ + 4�̄�̄ + 2�̄2� ,

d�̄

dl
= 3�̄ − 2�̄2,

d��

dl
= 3�� − 4�̄2. �29�

Here the limit m→0 of the numbers of replicas was taken.
This system of coupled flow equations can be solved in a
closed fashion. The details of the solution are summarized in
Appendix II. The main results of this calculation are as fol-
lows. For g�gc with

gc =
3�2��2 − 1�

8
�0 � 0.22�0, �30�

disorder does not change significantly the fluctuation induced
first order transition, whereas for g�gc the system is domi-
nated by strong, nonlocal disorder fluctuations and no or-
dered lamellar state forms. Since g /�0=�0 /�0, this criterion
can be expressed in terms of a critical value for the fluctua-
tions of the Flory-Huggins parameter ���2, and is given by

����2

�s
�

c
�

1

N1/4 . �31�

Disorder affects long polymer chains stronger than short
chains, a consequence of the relation between the interaction
and disorder strength given in Eq. �10�.

If g�gc, the coupling constant ���l� changes sign �see
Fig. 2�a�� at a scale

l* =
1

3
ln�1 +

	�2g/3�0�
�0

� , �32�

with

	�x� =
2

1 − 2x + �1 + 8x2 − 8x
. �33�

No other coupling constant diverges or changes sign for
l� l*. The behavior is similar to that of the clean Brazovskii
transition and for g /�0→0 we recover the clean limit Eq.
�23�. On the other hand, for g�gc all coupling constants
diverge at the scale

lg =
1

3
ln�1 +

3

2g
� . �34�

From the solution of Eq. �29� it further follows that these
divergencies are “driven” by the divergence of the coupling
constant �̄. As discussed in detail above, a large value of �̄
implies a strong renormalization of the distribution function
of the randomness. Nonlocal disorder correlations, which are
clearly tied to strong random compositional fluctuations on
the scale 2� /q0 occur instead of an ordered lamellar state. In
Fig. 2 we show the flow of the various coupling constants,
demonstrating that for g�gc the coupling constant ��

changes sign well before all other coupling constants di-
verge. On the other hand, for g�gc the systems flows to a
behavior with strong randomness and nonlocal disorder cor-
relations while �� remains positive �see Fig. 2�a��.

FIG. 2. �Color online� RG flow of the coupling constants as
derived from Eq. �29� for �0=0.01 and g=0.6gc ,gc ,1.4gc. Dashed

�full� curve refers to �a� �̄���� and �b� �̄����.
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The details of the phase boundaries between the various
states are determined by the flow behavior of the mass pa-
rameter r�l�. The solution for the mass flow equation is �see
also Fig. 3�a��

r�l� = e2l�r0 + �
0

l

e−2l��2�̄�l�� + 3�̄�l���dl��
= e2l�r0 + 3��0 −

2g

3
�

� �
0

l el�dl�

1 + ��0 − �2g/3���e3l� − 1�
� . �35�

Here, the divergencies of �̄ and �̄ at lg are all canceled and
the result for r�l� is precisely the same as for the clean sys-
tem but with

�0 → �0 −
2g

3
. �36�

As in the clean system, scaling stops at r�l0�=1 which leads
to a boundary

r0 = e−2l0 − 3�
0

el0

dy
1

1 − „�0 − �2g/3�…
„�0 − �2g/3�…

+ y3

. �37�

If g�gc= �3�2−�2� /8��0 there is a fluctuation induced first
order transition with finite randomness at l0= l*, with l* de-
fined by Eq. �32�. On the other hand, for g�gc up to the
leading order in g and �0 the boundary between the liquid
and glassy phases is given by

r0 =
5

2
�2g

3
�2/3

−
2�

�3
��0 −

2g

3
�2/3

. �38�

In Fig. 4 we show the phase boundary lines in the r0 ,�0, and
g parameter space.

A qualitative understanding of these results can be ob-
tained by combining simple droplet arguments with a crite-
rion similar in spirit to the one developed by Harris �39� for
disordered second order phase transitions. We consider the
equation of state of the lamellar phase in the clean system
�8�, using the dimensionless variables of this paper:

− r0 = �−2 + �0� . �39�

Here, � is the dimensionless correlation length �the correla-
tion length measured in units of q0

−1�. This gives a value r0
*

=−3�0
2/3 /22/3 where for the first time a nontrivial solution

FIG. 3. �Color online� RG flows as derived from Eq. �29� for
�0=0.01 and g=0.6gc ,gc ,1.4gc. �a� r�l� for r0=r0

* �see Eq. �26��.
The dotted line defines the scaling limit 
0=�0

2, i.e, r=1. �b�
Dashed �full� curve refers to �̄����.

FIG. 4. Phase boundaries of the model Eq. �4� determined from
the solution of the flow equations Eqs. �29�. In the three graphics
the solid lines represent the boundary between the liquid and lamel-
lar phases, the dashed lines the boundary between the liquid and
glassy phases, and the dotted line the boundary between the lamel-
lar and glassy phases.

CORRELATED DISORDER IN RANDOM BLOCK COPOLYMERS PHYSICAL REVIEW E 72, 011806 �2005�

011806-7



becomes possible �spinodal line�. The value of the correla-
tion length at the transition is �*=22/3�0

−1/3. In the presence of
disorder, the equation of state is given as

− r0 − t�x� = r + �0�	x
2� , �40�

where �	x
2� is the �appropriately rescaled� mean square de-

viation of 	x in the presence of disorder. t�x� is the random
mass and has also been rescaled to be dimensionless.We con-
sider a solution with fixed modulation direction q0 �with
�q0�=q0� along the x� axis: 	�x� ,x��=A�x� ,x��eiq0x�. As
shown in Ref. �32�, domain walls where q0 �n, with domain
wall normal vector n, are governed by ���A�2 and decay
on the length scale of the correlation length �. On the
other hand, domain walls with q0�n are determined by
�1/4q0����

2 A�2 and decay on the scale ��q0
−1. For weak cou-

pling � q0�1, and the transverse domain walls �q0�n� of a
droplet are much less costly than the longitudinal ones.
Droplets will therefore be ellipsoidal �cigarlike�. Disorder
fluctuations along q0 will predominantly affect droplet for-
mation and are determined by t��x��=�dd−1x�t�x� ,x��, inde-
pendent of the disorder variation perpendicular to q0. Its dis-
tribution function is t�x��t�x���=2g��x� −x���. The typical
value of the disorder in a regime of linear dimension L is
then

tL =
1

L
�

x��L

t�x��dx� . �41�

The typical value �tL=�tL
2 is then given as tL

2 =2g /L. Disor-
der is not changing the equation of state dramatically if
�t���−2 which gives g��−3. Due to the first order character
of the transition the correlation length � never exceeds
�*��0

−1/3. Thus, there is a regime at small disorder strength
where the equation of state is not dramatically changed. The
resulting criterion is g�� in agreement with our renormal-
ization group results. The finite correlation length at the first
order transition protects the ordered state from disorder fluc-
tuations. If the first order transition becomes too weak, the
correlation length at the transition becomes arbitrarily large
and the system becomes effectively critical. In this case the
disorder starts dominating the low energy physics and the
system changes character. This conclusion is fully consistent
with our renormalization group analysis presented above. It
is the flow toward negative �� and the related first order
transition that avoids the otherwise inevitable disorder driven
divergence of the coupling constants.

To summarize our results we show in Fig. 5 a phase dia-
gram for the diblock copolymer system as a function of the
mean phase segregation strength �̄ and disorder strength

�����2 for a fixed number of monomers �N=104�. The
boundary between the glassy state defined by Eqs. �27� and
�30� appears at �� /�s�0.1.

IV. CONCLUSION

In summary, we have investigated the effect of a random
Flory-Huggins parameter ��x� in a symmetric diblock co-
polymer melt. Such fluctuations occur in a copolymer where

one block is near its structural glass transition �30,31�. The
decreased mobility of the monomers of this block implies a
partial annealing and leads to slow nonthermal compositional
fluctuations �29�. In the clean limit the microphase segrega-
tion between the two blocks causes a weak, fluctuation in-
duced first order transition to a lamellar state. Using a renor-
malization group approach combined with the replica trick to
treat the quenched disorder, we showed that in case of small
fluctuations of ��x� the first order transition to a lamellar
state is unchanged by disorder. Once the strength of the spa-
tial fluctuations of the Flory-Huggins parameter exceeds a
critical value that depends on the length of the polymer
chains, the character of the transition changes. The system
becomes dominated by strong randomness. Very likely a
glassy rather than ordered lamellar state occurs. In this dis-
order dominated regime a strong renormalization of the ef-
fective disorder correlations occur. Nonlocal disorder corre-
lations emerge that reflect strong compositional fluctuation
on the scale of the radius of gyration of the polymer chains.
If nonthermal statistical fluctuation of the Flory-Huggins pa-
rameter within the volume occupied by a copolymer chain
exceeds a fraction of the order of N−1/4 of the critical cou-
pling ���s=10.49/N� the lamellar state is unstable. Instead
it leads to a state with no long range order and a renormal-
ized distribution of the Flory-Huggins constant. The strength
of the first order transition depends on the chain length N and
is more pronounced for shorter chains. In this case the cor-
relation length of the system at the clean phase transition is
comparatively short and critical fluctuations are unimportant.
The first order transition is then unaffected by weak disorder.
On the other hand, longer chains imply a much weaker first
order transition and critical fluctuations with large character-
istic correlation length come into play. These critical fluctua-
tions are extremely susceptible with respect to disorder,
which is reflected in a flow toward infinite disorder strength.
The same result was obtained using a modified Harris crite-
rion �39�. It is important to note that the RG and replica
scheme employed here does not privilege particular configu-
rations from either a specific wave vector �8� or superposi-

FIG. 5. �Color online� Phase boundaries between lamellar,
glassy �nonlocal disorder correlations�, and disordered states for a
disordered symmetric copolymer with N=104 monomers as func-
tion of the average Flory-Huggins parameter �̄ / �̄0 and its fluctua-

tion �� /�s=���2 /�s. The reference units are, respectively, �̄0, the
critical Flory-Huggins parameter for the clean case ��0=0� as given
by Eq. �27�, and �sN=10.50.
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tions of randomly picked wave vectors, as in Refs. �52,53�,
but rather, expresses the entropy that can be extracted from
the phase space of a spherical shell �of radius q0� of wave
vectors. Such a large phase space of the microphase separa-
tion transition in symmetric copolymers is therefore a very
interesting example for the unique role that disorder can play
at a first order phase transition.
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APPENDIX A: THE CLEAN BRAZOVSKII MODEL
WITHIN THE RENORMALIZATION GROUP APPROACH

In this appendix we summarize the main steps of the
renormalization group approach to the clean Brazovskii
model of Ref. �32�. The bare action of this problem is

S0 =
1

2
� ddq

�2��d	q„��q� − q0�2 + 
…	−q.

We introduce k= �q�−q0 and can write ��ddq / �2��d�¯
→q0

d−1�−�0

�0 dk d�¯, where d� is the measure for the solid
angle integration.

A tree level analysis with k�=k /b and 	�k�=b−�	k gives

S0 =
1

2
b2�−3�

−�0

�0

dk�d� 	�k�,��k�2 + b2
�	�−k�,�,

yielding 
�=b2
 and �= 3
2 for the scaling dimension of 	,

independent of dimension d.
In our treatment of the interaction term we also follow

closely the approach of Ref. �45�. The interaction term is
given as

Sint =
1

4
�

p1,p2,p3

�p1,p2,p3,−�p1+p2+p3�

� ��� − �p1 + p2 + p3��	p1
	p2

	p3
	−�p1+p2+p3�,

where the � function ensures that p4=−�p1+p2+p3� falls in-
deed into the small shell around the �d−1�-dimensional sur-
face of low energy excitations. In order to make the theory
renormalizable the � function is softened via ���0− �p4��
→exp�−�p4� /�0�. At the tree level it follows that

�k�i
� = e−�b−1�q0����−1�/�0b3�k�i/b

,

with �=n1+n2−n3, where ni are the unit vectors of the mo-
menta pi. The constraint ���−1 is a consequence of the fact
that the momentum p4 lies within a shell �q0−�0 ,q0+�0�.
This implies that the four wave vectors pi are equal and
opposite in pairs when their magnitude equals q0. Thus, only
�q1,−q1,q2,−q2

survives and satisfies

�q1,−q1,q2,−q2
� = b3��q1,−q1,q2,−q2

+ ��q1,q2
� .

For a scalar field it holds generally that

��q1,q2
= − 3�

q

�

uq,−q,q1,−q1
uq,−q,q2,−q2

GqGq

− 3�
q

�

uq,−q�,q1,q2
uq�,−q,−q1,−q2

GqGq�

− 3�
q

�

uq,−q�,q1,−q2
uq�,−q,q2,−q1

GqGq�

with q�=q+q1+q2 and q�=q+q1−q2. In distinction to the
usual 	4 theory we need to consider these three different
terms separately. There are two distinct ways to arrange the

angle of the unit vectors n1 and n2, leading to �̄ and ��. For
a generic angle between q1 and q2 only one of the above
three terms has propagating lines which are always on the
low energy surface, yielding

��q1,−q1,q2,−q2
= − 3�̄2�

q

�

Gq
2 ,

while in the case of q1=q2 two of the three terms contribute
and it follows that

��q1,−q1,q1,−q1
= − 6�̄2�

q

�

Gq
2 .

In both cases the coupling constant in the interaction is that

for a generic angle, i.e., �̄. It holds that

�
q

�

Gq
2 = 2qm

d−1Kd�
�0/b

�0

dp
1

�r + p2�2 =
1

3
�

�0l

�r + �0
2�2 ,

where �=6qm
d−1Kd. Thus we find the following flow equa-

tions:

d�̄

dl
= 3�̄ −

��0�̄2

�r + �0
2�2 ,

d��

dl
= 3�� −

2��0�̄2

�r + �0
2�2 .

Similarly, it follows for the mass term that 
�=b2�
+��,
where

�q� = 3�
q

�

�q�,−q�,q,−qGq,

which is only weakly momentum dependent and it holds that

d


dl
= 2
 + ��0

�̄


 + �0
2 .

Considering a weak first order transition we neglect 
 in the
various denominators, i.e., 
+�0

2��0
2. We verified by nu-

merically solving the full flow equations of the problem that
this approximation only causes very minor changes in the
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final results. Rescaling �̄=��̄ /3�0
3 and similarly for all the

other coupling constants as well as r=
 /�0
2 yields the equa-

tions given in Eq. �21�.

APPENDIX B: DETAILS OF THE SOLUTION OF THE
FLOW EQUATIONS

In this appendix we give the full flow equation for the
disordered Brazovskii model and summarize in detail its so-
lution. A one-loop calculation along the lines of the clean
model, but taking into account all six coupling constants,
yields

d


dl
= 2
 + K�
��3�̄ + m�̄ + 2�̄� ,

d�̄

dl
= 3�̄ − ��
��3�̄2 + 4� �� ,

d��

dl
= 3�� − 2��
��3�̄2 + 4� �� ,

d�̄

dl
= 3�̄ − ��
��6� � + m�̄2 + 4� �� ,

d��

dl
= 3�� − ��
��6� � + m�̄2 + 4� � + 2�̄2� ,

d�̄

dl
= 3�̄ − 2��
��̄2,

d��

dl
= 3�� − 4��
��̄2. �B1�

Here

K�
� =
d

dl
�

q

�

Gq =
1

3
�

�0


 + �0
2 ,

��
� =
d

dl
�

q

�

Gq
2 =

1

3
�

�0

�
 + �0
2�2 ,

with �=3q0
2 /�2. We first approximate ��
����0� and

K�
��K�0� which gives K�0�=� /3�0 and ��0�=� /3�0
3.

We have solved numerically the flow equations without this
simplification and only found very minor differences. Further

we introduce dimensionless coupling constants �̄=��0��̄
and similarly for all other the coupling constants as well as
r=
 /�0

2. Performing the m→0 limit of the numbers of rep-
licas finally yields the flow equations given in Eq. �29�.

Before we give the solution of this set of equations we
discuss the fixed points and demonstrate that no additional
disorder fixed point occurs. There are altogether four differ-
ent fixed points. At the Gaussian fixed point all coupling
constants together with r* vanish. Next, we find the clean

fixed point where all disorder coupling constants vanish, but
�̄*=1, ��

*=2, 
*=− 3
2 .This fixed point corresponds to a tric-

ritical point and was discussed in detail in Ref. �51�. Further-
more, there are two more, unphysical fixed points where
some of the �’s and �’s are positive, or the �’s negative,
which are in both cases signs that render the theory unstable.
Note, all the disorder variables have a bare value −g and are
negative. Thus, there are no additional disorder related fixed
points.

Next we summarize the solution of the flow equations.
The above set of flow equations, Eq. �29�, can be solved in a
closed fashion. It is useful to first solve the flow equation for
�̄�l�:

�̄�l� =
− e3lg

1 − �2g/3��e3l − 1�
.

Since �̄�l=0�=−g�0, �̄�l� diverges at a value

lg =
1

3
log�1 +

3

2g
� .

The important issue is whether the flow will ever reach lg,
i.e., whether there will be a divergence of other coupling
constants, an instability of the system ��� �0�, or whether
scaling stops for some l smaller than lg.

Considering next ���l� leads to the solution ���l�=2�̄�l�
+ge3l and ���l� diverges together with �̄�l� and will not
change sign for l� lg.

We next find the solution for �̄�l�:

�̄�l� = −
�0�̄�l�/g

1 + ��0 − �2g/3���e3l − 1�
,

which diverges if �̄�l� does. If g�
3
2�0, �̄�l� also diverges at

the scale

lu =
1

3
ln�1 +

1

�2g/3� − �0
� .

However, for g�0 it always holds that lg� lu, i.e., �̄�l� does
not diverge before �̄�l�.

Next we consider the solution for ���l� which signals the
fluctuation induced first order transition in the clean case. It
holds that

���l� = 2�̄�l� − �0e3l.

�� changes sign at the scale l* where �̄�l*�= ��0 /2�e3l*. Using
the above solution for �̄�l� it follows that

l±
* =

1

3
ln�1 +

1

�0
� 2

1 − �4g/3�0� ± ��2g/3�0���
with ��x�=�1+8x2−8x. As can be seen in Fig. 2, there are
two l values where �̄�l� changes sign. We have to look for
the smaller value �the first sign change�. The first time where
this gives a real solution for l* happens when the argument of
the square root in ��x� vanishes. This yields the g value
where �� changes sign first:
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gc =
3�2��2 − 1�

8
�0.

Finally we discuss the solutions for �̄�l� and ���l�. It holds
that

�̄�l� = −
g3e3l

�0
2 � �̄�l�

�̄�l�
�2

.

The solution �̄�l� will, for the same reason as �̄�l�, not di-
verge before �̄�l�. Considering ���l�,

���l� =
ge3l�1 + �2g/3��e3l − 1�2��2g/3� − �0�y�l��

�1 − �2g/3��e3l − 1���1 + y�l��

with y�l�= �e3l−1���2g /3�−�0�−2. �� diverges at the scale lg.
However for g�27� 2�0 the coupling constant ���l� changes
sign. Restricting ourselves to g�27� 2�0 we do not need to
specify whether this sign change ever takes place before �̄�l�
diverges.
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